Joining of Al 6061 alloy to AISI 1018 steel by combined effects of fusion and solid state welding
نویسندگان
چکیده
The joining of a 6-mm thickness Al 6061 to AISI 1018 steel has been performed by the combined effects of fusion and solid state welding. The process is derived from friction stir welding (FSW) but with an adjustable offset of the probe location with respect to the butt line. Metallographic studies by optical microscopy, electron probe microscopy, and the utilization of the X-ray diffraction technique have been conducted. It was found that the intermetallic phases Al13Fe4 and Al5Fe2 exist in the weld zone. The tool was significantly worn during welding and is broken after traveling 100 mm at a rotational speed of 917 rpm. The wear of the tool significantly affects the structure of the weld, and the tool breakage was detected by the incorporated acoustic emission (AE) sensors. It appears that the joining of an Al 6061 alloy to AISI 1018 steel with a sound heterogeneous weld microstructure is feasible using this process, and the tool breakage can be detected by the AE sensing technique. # 2004 Elsevier Ltd. All rights reserved.
منابع مشابه
Feasibility study of friction stir welding of 6061-T6 aluminium alloy with AISI 1018 steel
The present work demonstrates that friction stir welding (FSW) is a feasible route for joining 6061 aluminium (Al) alloy to AISI 1018 steel. The weld has a good weld quality and is free of cracks and porosity. The tensile failure happened at the boundary between the nugget and thermomechanically affected zone of the base Al alloy, indicating that the weld has a higher joining strength. Despite ...
متن کاملExperimental investigation of Tool Geometry on Mechanical Properties of Friction Stir Welding of AA6061
AA 6061 has gathered wide acceptance in the fabrication of the light structures required to high strength. Compared to the fusion welding processes that are used for joining structural aluminium alloys, friction stir welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt and recast. In this experimental work, an extensive invest...
متن کاملOptimization of the Pulsed Gas Tungsten Arc Welding in Dissimilar Joining Austenitic Stainless Steel AISI 316L to Nickel-Base Super Alloy of Monel 400
In this research, optimization of the pulsed gas tungsten arc welding including pulse current, background current, pulse frequency and on time were investigated in welding of non-similar materials of austenitic stainless steel AISI 316L and nickel-base super alloy of Monel 400 by using ERNiCr3 filler metal. In order to obtain optimum conditions of welding the Taguchi method with the L9 array wa...
متن کاملEffect of Welding Heat Input on the Intermetallic Compound Layer and Mechanical Properties in Arc Welding-brazing Dissimilar Joining of Aluminum Alloy to Galvanized Steel
The effect of weld heat input on the formation of intermetallic compound (IMCs) layer during arc welding–brazing of aluminium and steel dissimilar alloys, was investigated through both finite element method (FEM) numerical simulations and experimental measurements. The results of FEM analysis as well as welding experiments indicated that increasing weld heat input increases the thickness of IMC...
متن کاملWeldability, machinability and surfacing of commercial duplex stainless steel AISI2205 for marine applications – A recent review
In the present review, attempts have been made to analyze the metallurgical, mechanical, and corrosion properties of commercial marine alloy duplex stainless steel AISI 2205 with special reference to its weldability, machinability, and surfacing. In the first part, effects of various fusion and solid-state welding processes on joining DSS 2205 with similar and dissimilar metals are addressed. M...
متن کامل